Notes

A Convenient Synthesis and Molecular Structure of Ru(CO)₃[Ph₂PN(*i*-Bu)PPh₂-P, P]

XU, Feng-Bo(徐凤波) ZHANG, Zheng-Zhi*(张正之)

Elemento-Organic Chemistry Laboratory, Nankai University, Tianjin 300071, China

 $Ru(CO)_3[Ph_2PN(i-Bu)PPh_2-P, P]$ was conveniently obtained by the reaction of $Ru(DMSO)_4Cl_2$ with $Ph_2PN(i-Bu)-PPh_2$ and CO in the presence of Zn powder under mild conditions. The crystal and molecular structure was determined by X-ray diffraction. This compound possesses a distorted trigonal bipyramidal configuration.

Keywords Synthesis, molecular structure, $Ru(CO)_3[Ph_2PN-(i-Bu)PPh_2-P, P]$

Under mild conditions we have obtained some mono- or di-metal carbonyls containing phosphine ligand by the reductive carbonylation of metal halides. 1-4 We now extend this method to ruthenium compound to give a convenient preparation of Ru(CO)₃[Ph₂PN(i-Bu)-PPh₂]. Only a few preparation methods for phosphine containing monoruthenium (0) carbonyl compounds were known. Collman and Poper firstly reported the preparation of trans-Ru(CO)₃(PPh₃)₂ by two-step reactions of RuCl₃ with CO and PPh₃ through RuCl₂(CO)_{2-n} intermediate at high pressure (60 psi) and elevated temperature (100°C). After this Pomeroy et al. developed two methods of preparation of Ru(CO)₄[P(OCH₃)₃] and $Ru(CO)_3[P(OCH_3)_3]_2$ from $Ru_3(CO)_{12}$ and $P(OCH_3)_3$ at high pressure (80 atm.) and temperature. 6 Using the same method Pomerov also obtained Ru (CO)₄ (AsPh₃) compound. Ahmad et al. gave the preparation of trans-Ru(CO)₃(PPh₂)₂ from RuCl₃ by reaction with polyaldehyde in the presence of PPh₃.8

Recently, $Ru(CO)_3[Ph_2PN(Et)PPh_2-P, P]$ has been formed from $Ru_3(CO)_{12}$ and $Ph_2PN(Et)PPh_2$ by a

photochemical method.⁹ We gave a two-step method for the preparation of $Ru(CO)_3(Ph_2Ppy)_2$.¹⁰

A dichloromethane/tetrahydrofuran solution of $\operatorname{Ru}(\operatorname{DMSO})_4\operatorname{Cl}_2$ was treated with diphosphazane $\operatorname{Ph}_2\operatorname{PN}(i\operatorname{-Bu})\operatorname{PPh}_2$ under an atmosphere of carbon monooxide at room temperature to give the ruthenium complex $\operatorname{Ru}(\operatorname{CO})_3[\operatorname{Ph}_2\operatorname{PN}(i\operatorname{-Bu})\operatorname{PPh}_2]$ (42%). The IR spectrum consisted of three absorption peaks assigned to $\nu(\operatorname{CO})$ at $2050\,\mathrm{(m)}$, $1994\,\mathrm{(s)}$ and $1955\,\mathrm{(m)}$ cm⁻¹, which show the three carbonyls having $C_{3\nu}$ symmetry. The $^{31}\operatorname{P}$ NMR spectrum revealed a single peak at 70.40.

The molecular structure with selected bond distances and bond angles of this compound determined by X-ray diffraction study is shown in Fig. 1. The Ru atom possesses a distorted trigonal bipyramidal configuration with one P atom in the axial position and the other P atom in the equatorial position. P(2)-Ru(1)-C(2) angle is 161.9°. C(1)/C(3)/P(1)/Ru basically lies in one plane. The summation of angles P(1)-Ru(1)-C(3) (117.6°) , C(1)-Ru(1)-P(1) (122.7°) and C(1)-Ru(1)-C(3) (118.6°) is 358.9°. The structure may be compared to that of $Ru(CO)_4[P(OCH_3)_3]^5$ Ru(CO)₄(AsPh₃)⁷ in which the coordination of Ru ion is trigonal bipyramidal with P(OCH₃)₃ and AsPh₃ in axial positions. The average Ru-P distance in our compound (0.2345 nm) is longer than the value of 0.2309 nm in Ru(CO)₄[P(OCH₃)₃]. The average Ru—C distance of 0.1870 nm is shorter than the value of 0.1933 nm and the C-O distance of 0.1170 nm is longer than the value of 0.1130 nm. These results show that the two

^{*} E-mail: zzzhang@public1.tpt.tj.en

Received November 6, 2000; revised and accepted December 13, 2000.

Project (No. 29672078) supported by the National Natural Science Foundation of China.

phosphorus ligands possess better π -acceptor character. Therefore the σ -donor character of the C atom in carbonyls increases, the Ru—C bonds are strengthened and the C—O bond weakened. The dihedral angle between P-Ru-P and P-N-P is 2.6°.

We failed to obtain the analogous ruthenium complexes of $Ph_2PCH_2PPh_2$ (dppm), $Ph_2PCH_2CH_2PPh_2$ (dppe) ligands by the same method. The ligand Ph_2PN (i-Bu) PPh^2 is a stronger $\pi\text{-acid}$ than dppm and $dppe^{11}$ and a stronger back-donating $d\pi\text{-}\sigma^*$ could be formed with the Ru(0) atom which is possible reason responsible for the formation of the new complex.

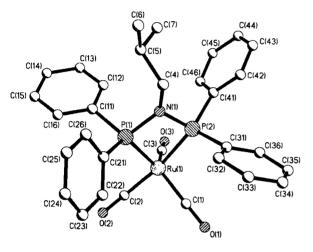


Fig. 1 Molecular structure of the title compound.

Crystal data: Ru(CO)₃[Ph₂PN(*i*-Bu)PPh₂], C₃₁ H₂₉NO₃P₂Ru, M = 626.6, triclinic, space group P1, a = 1.8001(5), b = 0.883(2), c = 1.9684(7) nm, $\alpha = 89.95(3)^{\circ}$, $\beta = 104.35(3)^{\circ}$, $\gamma = 104.23(2)^{\circ}$; V = 2.936 nm³ and Z = 4. μ (Mo K_{α}) = 6.61 cm⁻¹. In-tensity data in the range $2 \le \theta \le 22$ were collected using a

 $\omega/2\theta$ scan technique. Absorption corrections were applied. A total of 7458 unique reflections were collected of which 5095, with $I \geqslant 3\sigma(I)$, were used for all calculations.

The structure was solved by direct methods. Full-matrix squares refinement converged to R=0.067 and $R_{\rm w}=0.078$.

A table of the atomic coordinates and a full list of bond lengths and angles has been deposited at the Cambridge Crystal Graphic Data Centre.

References

- Zhang, Z. Z.; Wang, H. K.; Wang, H. G.; Zhao, W.
 J. Organomet. Chem. 1988, 247, 269.
- 2 Zhang, Z. Z.; Wang, H. K.; Xi, Z.; Wang, H. G.; Wang, R. J. J. Organomet. Chem. 1989, 376, 123.
- 3 Zhang, Z. Z.; Wang, H. K.; Xi, Z.; Wang, H. G.; Wang, R. J. Sci. Sin. B 1988, 1131.
- 4 Zhang, Z. Z.; Wang, H. K.; Xi, Z.; Wang, H. G.; Wang, R. J. J. Oraganomet. Chem. 1988, 352, C22.
- 5 Collman , J. P.; Roper, W. R. J. Am. Chem. Soc. 1965, 87, 4008.
- 6 Cobbledick, R. E.; Einstein, F. W. B.; Pomeroy, R. K.; Spetch, E. R. J. Organomet. Chem. 1980, 195, 77.
- 7 Martin, L. R.; Einstein, F. W. B.; Pomeroy, R. K. Inorg. Chem. 1983, 22, 1959.
- 8 Ahmad, N.; Robinson, S.D.; Uttley, M. F. J. Chem. Soc. Dalton Trans. 1972, 843.
- 9 Engel, D. W.; Moodley, K. G.; Subramony, L.; Haines, R. J. J. Organomet. Chem. 1988, 349, 393.
- Chan, W. H.; Zhang, Z. Z.; Mak, T. C. W.; Che, M.
 C. J. Chem. Soc. Dalton Trans. 1998, 803.
- 11 Orpen, A. G.; Connelly, N. G. J. Chem. Soc., Chem. Commun. 1985, 1310.

(E200011238 JIANG, X.H.; DONG, L.J.)